
Wucher	et	al.	(Supplementary	materials)	

"FEELnc: A tool for Long non-coding RNA annotation and its application to the 
dog transcriptome" by Wucher V. et al. 

  

This document aims at providing supplemental information on 1) FEELnc program predictors, 

2) the material, input files, exact command-lines and R scripts to make figures used in the 

program benchmarking, 3) a guideline for FEELnc, 4) the mapping and transcript models 

reconstruction, 5) rules to build the new canine annotation isoforms (CanFam3.1-plus) and 6) 

transcript and gene biotypes definitions.	

In addition, supplementary tables and figures are also inserted at the end of the document. 

 

 

1- FEELnc ORF Type definition 

FEELnc computes five types of ORFs depending on the presence/absence of one or both start 

and stop codons and the longest ORF is selected. The 5 ORF types are illustrated by the 

schema below and are defined as: 

- '0': ORFs with start and stop codon; 

- '1': same as '0' + ORFs with only a start codon; 

- '2': same as '0' + ORFs with only a stop codon; 

- '3': same as '0' + ORFs with a start or a stop (see '1' and '2'); 

- '4': same as '3' but if no ORF is found, take the whole input sequence as ORF. 

Note that if the CDS is annotated in the input reference .GTF file, then the CDS is 

automatically selected as the longest ORF. 
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Schema of the 5 ORF types annotated in FEELnc. The start and/or stop codons selected by FEELnc 

is/are underlined. 

 

2- Benchmarking programs and data availability 

For each tool (except for PhyloCSF, see below) tested on the GENCODE datasets (human and 

mouse), a protocol is available containing all command-lines and links to the data used in 

order to replicate the analysis (note that firefox or chrome browsers are preferred for 

readability): 

• Human: 

http://tools.genouest.org/data/tderrien/FEELnc_article_supplementary/human/README_human	

• Mouse: 

http://tools.genouest.org/data/tderrien/FEELnc_article_supplementary/mouse/README_mouse	

• Without lncRNAs learning dataset: 

http://tools.genouest.org/data/tderrien/FEELnc_article_supplementary/without_lncRNAs_learning/README_without_lncRNAs_learning	

• R scripts to generate paper figures: 

http://tools.genouest.org/data/tderrien/FEELnc_article_supplementary/figure_feelnc.tgz	
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In order to run PhyloCSF, we first downloaded multiple genome alignment provided by the 

UCSC browser [1]. We chose the human (GRCh38) alignment against 19 mammalian 

genomes (20way). Then, using the Stitch Gene blocks tool in Galaxy [2,3], we extracted from 

the multispecies alignment the alignment for each sequences in our human testing dataset 

(HT, see main article). Then, we used the PhyloCSF Docker container [4,5] with the 

PhyloCSF 58 mammals model and the sequence alignments of the 15 species in the 20way 

alignment who are also in the 58 mammals PhyloCSF model. For each sequence, the gaps in 

human sequence were removed. The ORFs have been predicted for the three frames and an 

ORF is defined as either: i) the sequence between two stop codons or ii) between the 

beginning of the sequence and a stop codon or iii) between a stop codon and the end of the 

sequence. For a sequence, the best score among all predicted ORFs gives his coding 

probability.	

 

3- FEELnc guidelines	

Here, we provide two guidelines describing how to use FEELnc for typical analyses with and 

without a reference annotation. Note that:	

• The step '1' is not part of FEELnc but could usually be done by transcriptome 

reconstruction programs either genome-guided (Cufflinks, StringTie…) or de novo 

assembly tools (Trinity, KisSplice…).	

• Each of these steps can be run independently. 

• The FEELnccodpot step can be run using either GTF or FASTA files, that is why it can 

be can used with or without a reference genome. Even with a reference genome, it 

can be run using FASTA format. In contrary, the two other modules, FEELncfilter and 

FEELncclassifier do require GTF files as input and so, implicitly, a reference genome.	

Minimal command line examples are provided for each step (except '1'). 

In the case of an annotation with a reference genome:	

1. Transcript models reconstruction, the first step is to reconstruct transcript model 

from RNA-seq experiment with dedicated tool as Cufflinks or Stringtie. This will 

lead to a GTF file containing the coordinates of new potential transcripts, later 

denoted as the transcript models file (in GTF).	
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2. FEELncfilter flags potential transcripts of the transcript models file which overlap a 

reference annotation file (in GTF format). This leads to a file with transcript models 

that do not overlap the reference annotation, denoted later as candidate models file 

(in GTF).	

FEELnc_filter.pl -i transcript_model.gtf -a reference_annotation.gtf 

> candidate_model.gtf	

3. FEELnccodpot calculates a coding potential score and infer the biotype, 

coding/non-coding, of the models in the candidate lncRNA transcript models file. It 

can be used with the candidate models file (in GTF) and the genome sequence to 

extract the FASTA sequences from it. Concerning the learning step of FEELnccodpot, 

three strategies can be applied with respect to the availability of a learning lncRNA 

file:	

(a) Annotated lncRNAs are available: FEELnccodpot will use them to learn is 

random forest model.	

FEELnc_codpot.pl -i candidate_model.gtf -a reference_mrna.gtf -

l reference_lncrna.gtf -g genome.fasta	

(b) No annotated lncRNAs are available but annotated lncRNAs from a closest 

species (< ~100 Myr) are available: FEELnccodpot will use them to learn its 

random forest model.	

FEELnc_codpot.pl -i candidate_model.gtf -a reference_mrna.gtf -

l close_species_lncrna.fasta -g genome.fasta	

(c) No annotated lncRNAs are available and no annotated lncRNAs from a closest 

species are available: FEELnccodpot will shuffle the set of mRNAs in order to 

simulate a set of lncRNAs.	

FEELnc_codpot.pl -i candidate_model.gtf -a reference_mrna.gtf -

g genome.fasta --mode=shuffle	

Once a strategy have been chosen, the user can use two distinct threshold methods:	

i. Use the automatic threshold (default).	

No option needs to be specified.	

ii. Provide two specificity thresholds. Example with a 0.95 specificity threshold 

for mRNAs and lncRNAs for strategy (a):	



Wucher	et	al.	(Supplementary	materials)	

FEELnc_codpot.pl -i candidate_model.gtf -a reference_mrna.gtf -

l reference_lncrna.gtf -g genome.fasta --spethres=0.95,0.95	

This leads to at least two transcripts files (in GTF), a lncRNAs file and a mRNAs 

file. In case of the second strategy, a TUCps file (in GTF) is provided.	

4. FEELncclassifier classifies the lncRNAs file regarding closest transcripts or transcripts 

which overlap in a window. This classification is done with respect to transcripts 

included in a user provide reference annotation file. This can be done with all 

biotypes. This lead to a column-separated file with each line representing a lncRNA, 

a transcript, the distance/overlap between them and the class of this lncRNA regarding 

this transcript.	

FEELnc_classifier.pl -i new_lncRNA.gtf -a reference_annotation.gtf > 

new_lncRNA_classes.txt	

	

In case of an annotation without a reference genome: 

1. Transcript models reconstruction, the first step is to reconstruct transcript model 

from RNA-seq experiment with dedicated tool as Trinity or KisSplice. This will lead 

to a FASTA file containing sequences of new transcripts, later denoted as the models 

file. 

2. FEELnccodpot calculates a coding potential score and infer the biotype, 

coding/non-coding, of the assembled transcript models. It can be used with the models 

file (in FASTA). Concerning the learning step of FEELnccodpot, three strategies can be 

applied with respect to the availability of a learning lncRNA file:	

(a) Annotated lncRNAs are available: FEELnccodpot will use them to learn is 

random forest model.	

FEELnc_codpot.pl -i model.fasta -a reference_mrna.fasta -l 

reference_lncrna.fasta	

(b) No annotated lncRNAs are available but annotated lncRNAs from a closest 

species (< ~100 Myr) are available: FEELnccodpot will use them to learn is 

random forest model.	

FEELnc_codpot.pl -i model.fasta -a reference_mrna.fasta -l 

close_species_lncrna.fasta	
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(c) No annotated lncRNAs are available and no annotated lncRNAs from a closest 

species are available: FEELnccodpot will shuffle the set of mRNAs in order to 

simulate a set of lncRNAs.	

FEELnc_codpot.pl -i model.fasta -a reference_mrna.fasta --

mode=shuffle	

Once a strategy have been chosen, the user can used two distinct threshold methods:	

i. Use the automatic threshold (default).	

No option needs to be specified. 

ii. Provide two specificity thresholds. Example with a 0.95 specificity threshold 

for mRNAs and lncRNAs for strategy (a):	

FEELnc_codpot.pl -i model.fasta -a reference_mrna.fasta -l 

reference_lncrna.fasta --spethres=0.95,0.95	

This leads to at least two transcripts files (in FASTA), a lncRNAs file and a mRNAs 

file. In case of the second strategy, a TUCps file (in FASTA) is provided.	

 

4- Reads mapping and transcript models reconstruction of canine RNA-seq samples	

The mapping of the reads has been made using STAR v2.5.0a and the models reconstruction 
with Cufflinks v2.2.1. Details on command lines are available at the following URL: 

http://tools.genouest.org/data/tderrien/FEELnc_article_supplementary/dog_reannotation/README_mapping_reconstruction	

Note: in order to get the full compatibility between STAR and Cufflinks, the option '--
alignEndsType EndToEnd' is needed in STAR. 

 

5- Canine extended coding potential isoforms	

For the prediction of the transcript biotypes in the extended dog annotation (CanFam3.1-plus), 

command lines, parameters and input data are freely available at the following URL: 

http://tools.genouest.org/data/tderrien/FEELnc_article_supplementary/dog_reannotation/README_dog_reannotation	

From the set of transcripts that overlapped the reference annotation (CanFam3.1), a transcript 

is considered as a new isoform if: neither all exons are included at 100% in the previous 

annotation, nor all introns are included at 100% in the previous annotation. After the 

identification of new isoforms, some of the remaining could overlap two already annotated 
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genes in CanFam3.1 annotation resulting in the merging of these two genes. In order to 

parsimoniously merge genes from the reference annotation, we only kept new merging 

isoforms when their biotypes correspond to the biotypes of each transcript of the reference 

genes. 

 

6- CanFam3.1-plus transcript and gene biotypes	

Using the FEELncclassifier module and a set of homemade rules, the lncRNAs from 

CanFam3.1-plus have been classified according to the 5 following classes: 

l Genic long non-coding RNA (glncRNA): a lncRNA who is sense exonic or intronic of 

an mRNA (note that this only concerns new isoforms of already annotated transcripts); 

l Host long non-coding RNA (hlncRNA): a lncRNA who is sense exonic or intronic of 

a small non-coding RNA (sncRNA) (snoRNA, miRNA, rRNA, snRNA, etc); 

l Messenger RNA antisense (mRNA antisense): a lncRNA who is antisense exonic or 

intronic of an mRNA; 

l Non-coding RNA antisense (ncRNA antisense): a lncRNA who is antisense exonic or 

intronic of a sncRNA; 

l Long intergenic non-coding RNA (lincRNA): a lncRNA who is neither sense or 

antisense of an mRNA or a sncRNA. 

 

In order to define the gene biotypes for all transcript biotypes belonging to this gene, we 

check every transcript biotypes and select the gene biotype with respect to the following 

hierarchy: 

1. Protein-coding; 

2. Antisense mRNA; 

3. Antisense ncRNA; 

4. glncRNA; 

5. hlncRNA; 

6. lincRNA; 

7. Processed pseudogene, pseudogene and misc_RNA; 
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8. miRNA, snoRNA, snRNA and rRNA; 

9. TUCp. 
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Supplemental Tables and Figures 

Species mRNA transcripts lncRNA 
transcripts 

Nematode Caenorhabditis elegans 30,939 3,271 
Chicken Gallus gallus 16,354 13,085 
Chimpanzee Pan troglodytes 19,907 18,604 
Cow Bos taurus	 22,118 23,696 
Fly Drosophila melanogaster 30,362 54,819 
Gorilla Gorilla gorilla 27,473 20,785 
Opossum Monodelphis domestica 22,310 21,014 
Orangutan Pongo abelii 21,414 15,601 
Platypus Ornithorhynchus anatinus 23,584 11,518 
Rat Rattus norvegicus 28,635 29,070 
Rhesus Macaca mulatta 36,384 9,325 
Zebrafish Danio rerio 44,052 5,014 
Arabidopsis Arabidopsis thaliana 12,956 3,853 

Supplementary Table 1: Number of available mRNA and lncRNA transcripts. All mRNA 

transcripts come from EnsEMBL, except for Arabidopsis thaliana where the mRNAs come 

from the TAIR database (https://www.arabidopsis.org/). All lncRNA transcripts come from 

the NONCODE database version 2016 (http://noncode.org/).	

 

Organ Dog breed Total reads Mapped 
reads 

Transcripts by 
Cufflinks 

Sample_owner 

Adrenal_gland Bernese 
Mountain Dog 54,776,586 88.97% 135,927 

Dr C. André: 
University 
Rennes1 – 

IGDR-CNRS 
Rennes, France 

Cerebellum Belgian 
Shepherd 52,776,728 91.70% 147,602 

Dr. M. 
Fredholm: 

University of 
Copenhagen, 

Denmark 

Cerebellum Great Swiss 
Mountain Dog 44,902,865 90.94% 145,034 

Dr. M. 
Fredholm: 

University of 
Copenhagen, 

Denmark 
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Cortex Belgian 
Shepherd 41,319,413 91.50% 137,780 

Dr. M. 
Fredholm: 

University of 
Copenhagen, 

Denmark 

Gut_colon Bernese 
Mountain Dog 52,310,396 89.55% 135,462 

Dr C. André: 
University 
Rennes1 – 

IGDR-CNRS 
Rennes, France 

Hair_follicule Labrador 45,694,722 82.67% 137,922 

Dr. T. Leeb: 
University 

Bern, 
Switzerland 

Jejunum Labrador 50,569,866 86.91% 129,404 

Dr. H Fieten: 
Utrecht 

University, 
Netherlands  

Keratinocyte Beagle 54,482,221 88.37% 129,950 

Dr. T. Leeb: 
University 

Bern, 
Switzerland 

Mammary_gland Great Swiss 
Mountain Dog 44,349,725 87.43% 137,290 

Dr C. André: 
University 
Rennes1 – 

IGDR-CNRS 
Rennes, France 

Nose* Labrador 58,842,156 87.66% 143,488 

Dr. T. Leeb: 
University 

Bern, 
Switzerland 

Nose* Labrador 68,181,155 88.90% 168,477 

Dr. T. Leeb: 
University 

Bern, 
Switzerland 

Nose* Labrador 69,193,538 84.34% 143,209 

Dr. T. Leeb: 
University 

Bern, 
Switzerland 

Olfactory_bulb Great Swiss 
Mountain Dog 45,799,491 88.44% 132,777 

Dr C. André: 
University 
Rennes1 – 
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IGDR-CNRS 
Rennes, France 

Pancreas Belgian 
Shepherd 47,171,936 79.01% 123,558 

Dr. M. 
Fredholm: 

University of 
Copenhagen, 

Denmark 

Retina Border Collie 50,480,134 83.40% 136,797 

Dr C. André: 
University 
Rennes1 – 

IGDR-CNRS 
Rennes, France 

Skin Beagle 52,275,710 86.43% 131,191 

Dr. T. Leeb: 
University 

Bern, 
Switzerland 

Skin Great Swiss 
Mountain Dog 49,080,979 84.98% 133,627 

Dr C. André: 
University 
Rennes1 – 

IGDR-CNRS 
Rennes, France 

Spinal_cord Great Swiss 
Mountain Dog 46,844,306 89.92% 132,420 

Dr C. André: 
University 
Rennes1 – 

IGDR-CNRS 
Rennes, France 

Spleen Belgian 
Shepherd 49,604,583 82.57% 139,643 

Dr. M. 
Fredholm: 

University of 
Copenhagen, 

Denmark 

Thymus Saluki 51,079,197 87.96% 135,265 

Dr. H. Lohi: 
University of 

Helsinki, 
Finland 

Supplementary Table 2: The number of total reads, the percentage of mapped reads and the 

number of transcripts reconstructed by Cufflinks for each RNA-seq sample. *corresponds to 

punch biopsies from the nasal planum of Labrador Retrievers (Jagannathan, V. et al., 2013). 
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Species Program Sensitivity Specificity Precision Accuracy F-score MCC 

Nematode 
FEELnc shuffle 0.961 0.768 0.864 0.885 0.91 0.76 
CNCI 0.761 0.887 0.912 0.811 0.83 0.635 

Chicken 
CNCI 0.908 0.983 0.981 0.946 0.943 0.893 
FEELnc shuffle 0.945 0.836 0.852 0.891 0.896 0.786 

Chimpanzee 
CNCI 0.876 0.981 0.979 0.929 0.925 0.862 
FEELnc shuffle 0.946 0.897 0.902 0.922 0.923 0.844 

Cow 
CNCI 0.93 0.993 0.993 0.962 0.96 0.925 
FEELnc shuffle 0.96 0.942 0.943 0.951 0.952 0.903 

Fly 
FEELnc shuffle 0.974 0.763 0.804 0.868 0.881 0.754 
CNCI 0.94 0.728 0.776 0.834 0.85 0.684 

Gorilla  
FEELnc shuffle 0.947 0.953 0.953 0.95 0.95 0.9 
CNCI 0.866 0.994 0.994 0.925 0.925 0.859 

Opossum 
CNCI 0.845 0.977 0.973 0.913 0.905 0.832 
FEELnc shuffle 0.947 0.88 0.888 0.914 0.916 0.829 

Orangutan 
FEELnc shuffle 0.944 0.934 0.935 0.939 0.939 0.878 
CNCI 0.833 0.985 0.981 0.912 0.901 0.832 

Platypus 
CNCI 0.799 0.974 0.965 0.891 0.874 0.791 
FEELnc shuffle 0.884 0.861 0.864 0.872 0.874 0.745 

Rat 
CNCI 0.91 0.855 0.861 0.882 0.885 0.766 
FEELnc shuffle 0.96 0.751 0.794 0.856 0.869 0.727 

Rhesus 
FEELnc shuffle 0.944 0.937 0.937 0.94 0.941 0.881 
CNCI 0.853 0.988 0.986 0.92 0.914 0.849 

Arabidopsis 
CNCI 0.845 0.982 0.984 0.905 0.909 0.821 
FEELnc shuffle 0.988 0.787 0.865 0.904 0.922 0.809 

Zebrafish	
CNCI 0.911 0.924 0.922 0.917 0.917 0.835 
FEELnc shuffle 0.956 0.848 0.863 0.902 0.907 0.809 

Supplementary Table 3: Performance metrics of FEELnc (shuffle mode) and CNCI tested on 

5k NONCODE lncRNAs and 5k EnsEMBL mRNA annotations. Programs are ranked by 

MCC values per species tests. Species rows in bold indicate FEELnc MCC values higher than 

CNCI. FEELnc shuffle corresponds to the training of FEELnc with species-specific mRNAs 

(positive class) and species-specific shuffled mRNAs with preserved 7-mer frequencies 

(negative class). 

 

Species Abrevation Sensitivity	 Specificity Precision Accuracy F-score MCC 
Time of  
speciation 
(Myr) 

Nematode Cele 0.973 0.306 0.584 0.639 0.73 0.374 709 
Arabidopsis Atha 0.969 0.355 0.6 0.662 0.741 0.410 1434 
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Fly Dmel 0.967 0.437 0.632 0.702 0.764 0.476 709 
Cow Btau 0.97 0.581 0.698 0.775 0.812 0.597 95 
Zebrafish	 Drer 0.942 0.711 0.765 0.826 0.844 0.671 340 
Platypus Oana 0.942 0.725 0.774 0.834 0.85 0.683 171 
Mouse Mmus 0.946 0.799 0.825 0.873 0.881 0.753 91.9 
Gorilla Ggor 0.945 0.81 0.832 0.878 0.885 0.762 8.9 
Chicken Ggal 0.93 0.845 0.857 0.887 0.892 0.778 292 
Opossum Mdom 0.931 0.849 0.86 0.89 0.894 0.782 158 
Rat Rnor 0.874 0.911 0.908 0.893 0.891 0.786 91.9 
Orangutan Pabe 0.932 0.874 0.881 0.903 0.906 0.807 15.8 
Rhesus Mmul 0.93 0.884 0.889 0.907 0.909 0.815 26 
Chimpanzee Pabe 0.918 0.905 0.906 0.911 0.912 0.823 6.7 
Human - 0.916 0.913 0.914 0.915 0.915 0.830 0 

Supplementary Table 4: FEELnc performance with NONCODE lncRNAs as training set on 
the human HT set. Time of speciation data was extracted from (Hedges et al, MBE, 2015). 

 

Features/biotypes CanFam3.1 CanFam3.1-plus New 

Genes mRNAs* 21,474 21,810 336 
lncRNAs** 8,008 10,444 2,436 

Transcripts mRNAs 100,110 158,750 58,640 
lncRNAs 12,506 22,880 10,374 

Supplementary Table 5: Comparison of CanFam3.1 versus CanFam3.1-plus annotations. 

Bold values correspond to the number of new genes/transcripts in CanFam3.1-plus. * Genes 

with at least one mRNA transcript; ** Genes with at least one lncRNA transcript (without any 

mRNA). 

 

UTR and CDS 
comparison 

CanFam3.1 CanFam3.1-plus CanFam3.1 CanFam3.1-plus 

5’UTR + 3’UTR length CDS length 

Transcripts with 
UTR or CDS 88,446 132,682 100,110 158,750 

Median 1,194 3,033 1,188 1,215 

Mean 2,301 3,783 1,652 1,680 

Supplementary Table 6: Comparison between the number of transcripts with an UTR and/or 

a CDS annotated and the length of these features between CanFam3.1 and the novel 

CanFam3.1-plus annotation.  
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Error 
types 

FEELnc 
option 

Sensitivity Specificity Precision Accuracy F-score MCC 

Mutation 
default 0.786 0.921 0.909 0.853 0.843 0.714 

wholeSeq 0.869 0.749 0.776 0.809 0.82 0.622 

 

Deletion 

default 0.234 0.943 0.803 0.589 0.363 0.251 

wholeSeq 0.861 0.732 0.762 0.796 0.808 0.597 

Insertion 
default 0.226 0.949 0.815 0.588 0.354 0.253 

wholeSeq 0.818 0.807 0.809 0.813 0.814 0.625 

Supplementary Table 7: Results of FEELnccodpot (--wholeSeq option) on modified mRNA 

and lncRNA testing sequences. The errors in the human testing set (HT) were simulated as 

follows: for each sequence, a number of nucleotides between 5 and 15% have been mutated 

(Mutation), deleted (Deletion) or inserted (Insertion). FEELnccodpot has been run as follow: 

default:  default options of FEELnc; wholeSeq:  k-mer frequencies made on the whole 

transcript sequence and the ‘ORF coverage’ predictor has been removed from the random 

forest predictors list. 
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Supplementary Figure 1: Distribution of FEELnc predictor values on the human learning 

dataset (HT) composed of 5,000 lncRNAs and 5,000 mRNAs annotated in GENCODE v24. 

 

Supplementary Figure 2: FEELnc performance (sensitivity, specificity and MCC in orange, 

blue and green, respectively) with respect to different combination of ORF types (x-axis) and 

multi k-mer lists (grey panels) on the human dataset. 
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Supplementary Figure 3: FEELnc performance (sensitivity, specificity and MCC in orange, 

blue and green respectively) with respect to different numbers of learning transcripts in x-axis 

with lncRNAs (top panel) and mRNAs (bottom panel). 

 

 

Supplementary Figure 4: Program benchmarking for different sizes of tested lncRNA and 

mRNA transcripts from the HT dataset. 

 

lncRNA number

mRNA number

0.80

0.85

0.90

0.95

1.00

0.80

0.85

0.90

0.95

1.00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

Number of transcripts

Pe
rfo

rm
an

ce
 v

al
ue

s

Performance
Sensitivity
Specificity
MCC

0.00

0.25

0.50

0.75

200−300 nt 300−500 nt 500−1000 nt 1000−1500 nt 1500−2000 nt 2000− nt
mRNA and lncRNA lengths

M
C

C
 v

al
ue

s

Programs
FEELnc
CNCI
CPAT_train
CPAT
CPC
PLEK_train
PLEK
PhyloCSF



Wucher	et	al.	(Supplementary	materials)	

 

Supplementary Figure 5: Program benchmarking for different percentages of shortened 

sequences in 5’-end or 3'-end for lncRNA and mRNA tested sequences from the HT dataset. 

 

 

Supplementary Figure 6: FEELnc MCC value using the shuffle strategy on the HT dataset 

with different size of fixed k-mer frequencies by the UShuffle program (left panel). The 

corresponding ratio value of permutated/non-permutated sequences by Ushuffle (right panel). 
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Supplementary Figure 7: Benchmarking FEELnc performance (sensitivity, specificity, MCC 

in dot, triangle and square respectively) on the HT dataset for the 3 learning strategies: using 

human lncRNAs from the GENCODE HT set, shuffled mRNAs and intergenic human 

sequences, denoted lncRNA, shuffle and intergenic respectively (in black, orange and blue). 

Panels correspond to FEELnc with: automatic CPS threshold (top-left), 0.93 specificity 

thresholds for both lncRNAs/mRNAs (top-right), 0.96 specificity thresholds for both 

lncRNAs/mRNAs (bottom left) and 0.99 specificity thresholds for both lncRNAs/mRNAs 

(bottom right). 
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